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Motivation for Integrals in Statistics
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Figure: Standard Normal Density (N(0,1)). Approximately 68% of the
probability lies within 1 standard deviation and 95% within 2 standard
deviations. The area under the whole curve (from −∞ to ∞) is 1.
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Motivation for Integrals in Statistics

Integral caclulus...

is a tool for computing areas under curves.

can be used to compute percentile rankings.

is also used to compute probabilities of events.

will be needed to compute the expected values and variance of
probability distributions.

is heavily used in statistical theory!
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Motivation for Integrals in Statistics
What if we wanted to find the area under the curve from -2 to -0.5?
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Motivation for Integrals in Statistics
We could approximate with rectangles or trapezoids. Narrower rectangles would give
better approximations.
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Differentiation Example
distance, velocity, acceleration

Let’s take d=distance, v=velocity, a=acceleration. You may
remember from physics, the distance travel after time t

d(t) =
a

2
t2

The velocity at any time t is the instantaneous rate of change of
the distance, v(t) = d ′(t):

v(t) = 2 · a
2
t = at

The acceleration at any time t is the instantaneous rate of change
of the velocity, a(t) = v ′(t) = d ′′(t):

a(t) = a
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Distance
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Figure: Distance over time, when a(t) = 2, v(t) = 2t, and d(t) = t2.
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Velocity
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Figure: Velocity over time, when a(t) = 2, v(t) = 2t, and d(t) = t2.
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Acceleration
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Figure: Acceleration over time, when a(t) = 2, v(t) = 2t, and d(t) = t2.
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What is the velocity at t=3 when a=2?

We know that v(t) = 2t, so clearly

v(3) = 2 · 3 = 6.

However we can also find the velocity, by looking at the area under
the acceleration curve from t = 0 to t = 3. This would just be the
area of a rectangle (base X height),

(3− 0) · 2 = 3 · 2 = 6.
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What is the velocity at t=3 when a=2?
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What is the distance at t=3 when a=2?

We know that d(t) = 2/2t2 = t2, so clearly

d(3) = 32 = 9.

However we can also find the distance, by looking at the area
under the velocity curve from t = 0 to t = 3. This would just be
the area of a triangle (1/2 X base X height),

1/2 · (3− 0) · 6 = 3/2 · 6 = 18/2 = 9.
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What is the distance at t=3 when a=2?
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Integration

The area under a curve is written:

b∫
a

f (x)dx

This formula is called the definite integral of f (x) from a to b.

Here a and b are our endpoints of interest. You can think of the
integral as the ‘opposite’ of the derivative.
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Integration

More specifically,

b∫
a

f (x)dx = F (b)− F (a) where F ′(x) = f (x)

F (x) is called the indefinite integral of f (x). The important
relationships between derivatives and integrals are:

F ′(x) = f (x) &

∫
f (x)dx = F (x)
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What is an integral?

You can think of integrating as looking at a derivative and trying
to find the original function.∫

3dx . What function has a derivate equal to 3? 3x .∫
2xdx . What function has a derivate equal to 2x? x2.∫
exdx . What function has a derivate equal to ex? ex .

In practice, you don’t have to search for the right function. We
have handy shortcuts (rules).
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Integration Rules
Integrating a Constant

∫
cdx = cx

Examples:∫
1dx = x∫
6dx = 6x∫
ydx = yx
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Integration Rules
Integrating a Power of x

∫
xndx =

1

n + 1
xn+1

Examples:∫
xdx = 1

2x
2∫

1
x2
dx =

∫
x−2dx = 1

−1x
−1 = − 1

x
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Integration Rules
Integrating an Exponential and Logarithmic Functions

Exponential: ∫
exdx = ex

(Natural) Logarithm: ∫
1

x
dx = log(x)
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Integration Rules
Basic Trigonometric Functions

Remember, d
dx cos(x) = −sin(x), thus∫

sin(x)dx = −cos(x)

and d
dx sin(x) = cos(x), thus∫

cos(x)dx = sin(x).
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Integration Rules
Multiple of a Function

∫
af (x)dx = a ·

∫
f (x)dx = aF (x)

Examples:∫
4x2dx = 4

∫
x2dx = 4

(
1
3x

3
)

= 4
3x

3∫
3
x2
dx = 3

∫
1
x2
dx = 3

∫
x−2dx = 3

−1x
−1 = − 3

x∫
µydy = µ

∫
ydy = µ

(
1
2y

2
)

= µ
2 y

2
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Integration Rules
Sums of Functions

∫
(f (x) + g(x)) dx =

∫
f (x)dx +

∫
g(x)dx = F (x) + G (x)

Examples:∫
4x + 3x2dx =

∫
4xdx +

∫
3x2dx = 4

∫
xdx + 3

∫
x2dx =

4 · 12x
2 + 3 · 13x

3 = 2x2 + x3∫
ex − 2

x dx =
∫
exdx − 2

∫
1
x dx = ex − 2log(x)
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Integration Rules
u-substitution

Sometimes the function we are integrating is similar to a simpler
function with an easy derivative.

For example,
∫

1
1−x dx is similar to

∫
1
x dx which we know is log(x).

Similar to the chain rule, we can think about functions within
functions.

Let’s set u = 1− x . If we differentiate the left with respect to u
and the right with respect to x we have du = −1dx . Solving for
dx we have dx = −1du. Now we can substitute these values into
our original integral.∫

1

1− x
dx =

∫
1

u
· (−1)du = −1

∫
1

u
du
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Integration Rules
u-substitution continued

Now let’s take the integral with respect to u:∫
1

1− x
dx = −1

∫
1

u
du = −log(u)

Then we can plug in the value for u = 1− x :∫
1

1− x
dx = −1

∫
1

u
du = −log(u) = −log(1− x)
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Integration Rules
u-substitution continued

Example: ∫
(2x + 4)3dx

We can take u = 2x + 4. Then du = 2dx or 1
2du = dx .

When we make the substitutions in our integral we have:∫
(2x + 4)3dx =

∫
u3 · 1

2
du =

1

2

∫
u3du

Now we have an integral we can easily compute

1

2

∫
u3du =

1

2
· 1

4
u4 =

1

8
u4

and then we just need to substitute back in for the functions of x .∫
(2x + 4)3dx =

1

2

∫
u3du =

1

8
u4 =

1

8
(2x + 4)4
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Finding Definite Integrals

Often we will be interested in knowing the exact area under the
curve f (x), not just the function F (x).

b∫
a

f (x)dx = F (x)|ba = F (b)− F (a)

Examples:
1∫
0

x2dx = 1
3x

3|10 = 1
313 − 1

303 = 1
3

∞∫
0

e−xdx = − e−x |∞0 = − e−∞ −−e0 = − 1
e∞ + e0 = 1

8∫
2

1
x dx = log(x)|82 = log(8)− log(2) = log

(
8
2

)
= log(4)
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Integration Example
distance, velocity, acceleration

Back to our original example, with a = 2. The velocity at any time
t = 3 is the definite integral of of the acceleration,

v(3) =
3∫
0

a(t)dt:

v(3) =

3∫
0

2dt = 2t|30 = 2 · 3− 2 · 0 = (3− 0) · 2 = 6

Similarly, the distance at any time t = 3 is the definite integral of

of the velocity, d(3) =
3∫
0

v(t)dt:

d(3) =

3∫
0

v(t)dt =

3∫
0

2tdt = t2|30 = 32 − 02 = 9
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Example

3∫
0

ex/3dx

We could take u = x/3. Then du = 1/3dx and 3du = dx .

When we substitute in for u and dx it is important to note that we
must also substitute in for our limits of integration. The lower
value u = 0/3 = 0 and the upper value would be u = 3/3 = 1.

3∫
0

ex/3dx =

1∫
0

eu ·3du = 3

1∫
0

eudu = 3eu|10 = 3(e1−e0) = 3(e−1)

Math Camp - Lecture 4 Jessica Godwin & Emily Finchum (UW) September 22, 2020 29



The End

Questions?
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