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Motivation

Matrix algebra provides concise notation and rules for manipulating
matrices (arrays of numbers).

Matrix algebra will be important for computing linear regression
estimates.

Math Camp - Lecture 2 Jessica Godwin & Emily Finchum-Mason (UW) September 21, 2020 3



Motivation

Example data.frame in R:

region years u5m lower upper

1 All 80-84 0.1691030 0.1573394 0.1815566

2 All 85-89 0.1603335 0.1490694 0.1722763

3 All 90-94 0.1208087 0.1079371 0.1349829

4 tanga 80-84 0.1810487 0.1369700 0.2354425

5 tanga 85-89 0.2230574 0.1677716 0.2902086

region: Regions in Tanzania

years: time, measured in 5-year periods

u5m: estimated under-five mortality rate

lower: lower end of confidence band

upper: upper end of confidence band
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Definitions & Notation
What is a matrix?

A matrix is an array of number is a rectangular form.
Examples:

A =

 1 2 6 4
5 8 12 8
4 3 2 1

B =

[
4 3 2
1 2 4

]
where A is a 3×4 matrix and B is a 2×3 matrix. Note: matrix
dimensions, (n ×m)are always listed as rows × columns.

Notation: Often A is written An×m.
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Definitions & Notation
What is a matrix?

In mathematical notation, a matrix is written

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33


Where xij is the value in the ith row and the jth column of matrix
X .
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Definitions & Notation
Special Matrices

A vector is a matrix that has n rows and 1 column (or 1 row and
n columns).
Examples: [

1 2 6 4
]

or

 4
5
1


A square matrix has the same number of rows and columns.
Example: [

4 3
1 2

]
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Definitions & Notation
Special Matrices

A symmetric matrix has elements such that xij = xji .
Example:  1 4 5

4 2 3
5 3 7


A symmetric matrix must also be a square matrix.
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Definitions & Notation
Special Matrices

A diagonal matrix is a matrix that is zero everywhere except on
the diagonal. Where the diagonal is defined as all elements for
which the row number is equal to the column number
{(1, 1), (2, 2), (3, 3), ...}.  1 0 0

0 2 0
0 0 7


A special case of a diagonal matrix is the identity matrix. Its
diagonal elements are all ones. 1 0 0

0 1 0
0 0 1


Clearly, the identity matrix (or any other diagonal matrix) is also
symmetric.
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Matrix Operations
Basic Operations

Matrix Equality: Two matrices A, B are equal if and only if, for
all elements, each aij = bij . (Note: this means they must have the
same dimensions.)

Matrix Transpose: The transpose of a matrix is found by
interchanging the corresponding rows and columns of a matrix.
The first row becomes the first column, the second row becomes
the second column, etc. The dimensions are then switched and the
element aij becomes the element aji . The transposed matrix is
often denoted At (or A′). You can find the transpose of a matrix
in R by using the t() function.

A =

[
1 2 6
3 5 9

]
At =

 1 3
2 5
6 9


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Matrix Operations
Addition & Subtraction

Two matrices can be added or subtracted only if their dimensions
are the same (both rows and columns). The corresponding
elements are then added or subtracted.

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
Example:[

1 2 6
3 5 9

]
−
[

1 3 8
6 9 6

]
=

[
0 −1 −2
−3 −4 3

]
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Matrix Operations
Scalar Multiplication

To multiply a matrix by a scalar (a constant value; any a ∈ R),
multiply each element by that number.
Example:

A =

[
1 3 8
6 9 6

]
3A =

[
3 9 24

18 27 18

]
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Matrix Operations
Multiplication Examples

Two matrices AnA×mA
and BnB×mB

can be multiplied only if the
number of columns of the first matrix, mA, equals the number of
rows of the second matrix, nB , i.e. the “inside numbers”.

The resulting matrix, (A · B)nA×mB
or (AB)nA×mB

has nA rows and
mB columns, i.e. the “outside numbers”.

A =

[
a11 a12 a13
a21 a22 a23

]
B =

 b11 b12
b21 b22
b31 b32


A is (2 × 3); B is (3× 2).
B · A is computable and has dimension 3× 2 · 2× 3 = 3× 3.
A · B is computable and has dimension 2× 3 · 3× 2 = 2× 2.
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Matrix Operations
Multiplication Examples

To compute A2×3 · B3×2, we find each element (ab)ijby summing
the crossproducts of the ith row of A and the jth column of B.

A =

[
a11 a12 a13
a21 a22 a23

]
B =

 b11 b12
b21 b22
b31 b32


A·B =

[
a11 · b11 + a12 · b21 + a13 · b31 a11 · b12 + a12 · b22 + a13 · b32
a21 · b11 + a22 · b21 + a23 · b31 a21 · b12 + a22 · b22 + a23 · b32

]
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Matrix Operations
Multiplication Examples

Examples:

A =

 1 3 8
6 9 6
2 1 3

 B =

 3 9
2 1
3 2


AB =

 1 · 3 + 3 · 2 + 8 · 3 1 · 9 + 3 · 1 + 8 · 2
6 · 3 + 9 · 2 + 6 · 3 6 · 9 + 9 · 1 + 6 · 2
2 · 3 + 1 · 2 + 3 · 3 2 · 9 + 1 · 1 + 3 · 2

 =

 33 28
54 75
17 25


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Matrix Multiplication
Order Matters

A =

 red1 red3 red8
6 9 6
2 1 3

 B =

 blue3 9
blue2 1
blue3 2


A · B is not necessarily equal to B · A, as with scalar
multiplication.

This is called the commutative property: 4× 2 = 2× 4 = 8.

B · A cannot be computed as the dimensions are not
compatible: 3× 2 · 3× 3.

The “inside numbers” are not equal: mB 6= nA.
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Matrix Operations
Inverse

We need something that “looks like” scalar division.

The multiplicative inverse of a scalar, a ∈ R, is the number, a−1

such that a× a−1 equals the multiplicative identity, e.g.

a× a−1 = 1.

We know then that, a−1 =
1

a
, or

a× 1

a
= 1.

This gives us the notion of division or multiplying by a fraction.
For example,

4 · 1/4 = 1

10÷ 5 = 10× 1

5
= 2× 5× 1

5
= 2.
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Matrix Operations
Inverse

The inverse of a matrix An×n is the matrix A−1n×n that satisfies

A · A−1 = I

.

In×n is the identity matrix. It has ones along the diagonal and
zeroes everywhere else.

I3×3 =

 1 0 0
0 1 0
0 0 1


Like the multiplicative identity, any matrix multiplied by I is itself:

A× I = I × A = A.
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Matrix Operations
Determinant

How do we find the inverse? How do we know if the inverse exists?

The determinant is a measure, in a sense, of the “volume” of the
matrix.
For a 2× 2 matrix,

A =

[
a b
c d

]
the determinant is D(A) = a · d − b · c .

If D(A) = 0, A−1 does not exist. A is singular.

There is no “volume” to the matrix.

If D(A) 6= 0, A−1 exists. A is nonsingular.
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Matrix Operations
Determinant

Examples:

A =

[
4 12
3 6

]
D(A) = 4 · 6− 12 · 3 = −12. Inverse exists. Matrix is nonsingular.

A =

[
2 4
1 2

]
D(A) = 2 · 2− 4 · 1 = 0. Inverse does not exist. Matrix is singular.
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Matrix Operations
Inverse Example

If the inverse, A−1, exists for A2×2 computing it easy.

For higher dimensions let a computer do it.

The function solve() computes matrix inverses in R.

Inverting big matrices can take a lot of computing power.

A =

[
a b
c d

]
A−1 =

1

D(A)

[
d −b
−c a

]
Recall: D(A) = a · d − b · c .
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Matrix Operations
Inverse Example

A−1 =
1

D(A)

[
d −b
−c a

]
Example:

A =

[
4 12
3 6

]
, A−1 =

1

−12

[
6 −12
−3 4

]
=

[
−1/2 1
1/4 −1/3

]
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Linear Equations

Let’s go back to thinking about systems of two equations:

ax + by = g

cx + dy = f

Previously we solved this system by eliminating the y variable,
solving for x , and then substituting back in for y .

No we can write this system in matrix notation:

A =

[
a b
c d

]
, z =

[
x
y

]
, w =

[
g
f

]
Solving our system of equations is the same as solving for z in the
matrix equation:

A · z = w
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Linear Equations
Examples

Solving our system of equations is the same as solving for z in the
matrix equation:

So how do we solve for z?

A · z =w

A−1 · A · z =A−1 · w [Left-multiply by A−1]

I · z =A−1 · w [A−1 × A = I ]

z =A−1 · w .

The solution to our system is z = A−1 · w =

[
x
y

]
.
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Linear Equations
Examples

2x + y = 1

4x + 3y = 8

A =

[
2 1
4 3

]
, z =

[
x
y

]
, w =

[
1
8

]

A−1 =
1

2 · 3− 4 · 1

[
3 −1
−4 2

]
=

[
3/2 −1/2
−2 1

]

z = A−1·w =

[
3/2 −1/2
−2 1

]
·
[

1
8

]
=

[
3/2 · 1 +−1/2 · 8
−2 · 1 + 1 · 8

]
=

[
−5/2

6

]

Math Camp - Lecture 2 Jessica Godwin & Emily Finchum-Mason (UW) September 21, 2020 25



Linear Regression and Least Squares

The goal of linear regression is estimate the intercept and slope
in a linear relationship between an independent variable or
covariate X and a dependent variable or outcome, Y .

In other words, we want to fit a line through pairs of points (xi , yi )
for observations i = 1, . . . , n.

What do we do when n > 2? What if we have more than one
independent variable?

Suppose we conduct a survey where we asked n people the same p
questions. We can put that organize that data in a matrix of
dimensions n × p, where each row is a person and each column is
the numerical response to one of the asked questions.
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Least Squares
Simple Linear Regression Example
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Least Squares

So how do we choose the dashed line?

We can write the equation:

yi = β0 + β1x1i + ...+ βpxpi

,

number observations: i = 1, . . . , n

number independent variables: j = 1, .., p

intercept: β0

slope: βj for each xj
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Least Squares

yi = β0 + β1x1i + ...+ βpxpi

In matrix notation:

y = Xβ =

 y1
...
yn

 =

 1 x11 ... x1p
1 ... ... ...
1 xn1 ... xnp

 ·
 β0
...
βp


yn×1 is the response.

Xn×(p+1) is the design matrix.

Notice the column of 1’s so that each observation’s model
includes a β0.

β(p+1)×1 are the unknown coefficients we want to estimate.
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Least Squares

How do we choose/estimate β(p+1)×1?

Least squares finds the line that minimizes the squared distance
between the points and the line, i.e. makes

[yi − (β0 + β1x1i + · · ·+ βpxpi )]2

as small as possible for all i = 1, . . . , n.

The vector β̂ that minimizes the sum of the squared distances is

β̂ =
(
X t · X

)−1
X ty .

Note: In statistics, once we have estimated a parameter we put a
“hat” on it, e.g. β̂0 is the estimate of the true parameter β0.
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Least Squares

β̂ =
(
X t · X

)−1
X ty .

To see this:

yn×1 =Xn×(p+1)β(p+1)×1

X ty =X tXβ [X isn’t square, X−1 doesn’t exist!](
X tX

)−1
X ty =

(
X tX

)−1
X tXβ(

X tX
)−1

X ty =I · β [(XTX ) is square and invertible.]

β =
(
X t · X

)−1
X ty
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Least Squares
Simple linear regression example in R

Truth:
yi = 1 + 2 · xi + εi ,

where εi N(0, 32) is thought of as noise or measurement error.

set.seed(1985)

beta_0<-1

beta_1<-2

n<-30

x<-runif(n,0,5)

y<-rnorm(n,mean=beta_1*x+beta_0,sd=3)

plot(x,y)

Math Camp - Lecture 2 Jessica Godwin & Emily Finchum-Mason (UW) September 21, 2020 32



Least Squares
Simulated Data
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Least Squares
with matrices in R

R functions and operators:

inverse: solve()

transponse: t()

matrix multiplication: % ∗%

X.mat<-matrix(c(rep(1,n),x),ncol=2)

Beta.mat<-solve( t(X.mat)%*%(X.mat) ) %*% t(X.mat)%*%y

First two rows of design matrix, X , and coefficients, β̂, estimated
via least squares.

X.mat[1:2,] Beta.mat

[,1] [,2] [,1]

[1,] 1 3.319174 [1,] 1.960837

[2,] 1 1.325468 [2,] 1.590737
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Least Squares
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Figure: Our data with the fitted line y = 1.59x + 1.96.
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Least Squares
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Figure: Our data with the fitted line y = 1.96 + 1.59x and the true line
y = 1 + 2x .
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