Center for Statistics and the Social Sciences Math Camp 2020 Algebra, Functions, & Limits

Jessica Godwin & Emily Finchum-Mason

Department of Statistics & Evans School University of Washington

September 21, 2020

- Math notation
- Order of operations
- Rules of exponents, logarithms
- **•** Equation of a line
- Functions, domain, range, examples
- **Function transformations**
- Continuous and piecewise functions
- o Limits

Notation

Real Numbers

- Any number that falls on the continuous line. Often represented by a, b, c, d
- Examples: 2, 3.234, $1/7$, $\sqrt{5}$, π
- The set of real numbers is denoted by \mathbb{R} . Then $a \in \mathbb{R}$ means a is in the set of real numbers.

Integers

- \bullet Any whole number. Often represented by i, j, k, l
- Examples: ...,-3,-2,-1,0,1,2,3,...

Variables

- Can take on different values
- Often represented by x, y, z

Notation

Functions

• Often represented by f, g, h

Examples: $f(x) = x^2 + 3$, $g(y) = 6y^2 - 2y$, $h(z) = z^3$

Summations

 \bullet Often represented by \sum and summed over some integer

Example: \sum^3 $i=1$ $(i+1)^2 = (1+1)^2 + (2+1)^2 + (3+1)^2 = 2^2 + 3^2 + 4^2 = 29$

Products

Often represented by \prod and multiplied over some integer

• Example:
$$
\prod_{k=1}^{3} (y_k + 1)^2 = (y_1 + 1)^2 \times (y_2 + 1)^2 \times (y_3 + 1)^2
$$

Fractions Multiplying & Dividing

> Fractions are used to describe parts of numbers. They are comprised of two parts:

> > numerator

denominator

All numbers can be written as fractions. Examples: 2 $\frac{2}{3}, \frac{16}{4}$ $\frac{16}{4} (= 4), \frac{2}{4} = \frac{1}{2}$ $\frac{1}{2}, \frac{8}{1}$ $\frac{8}{1} (= 8).$

Multiplication: Multiply the numerators; multiply the denominators. Examples: $\frac{1}{2} \times \frac{3}{4} = \frac{1 \cdot 3}{2 \cdot 4} = \frac{3}{8}$ 8

Division: Best to change it into a multiplication problem by multiplying the top fraction by the inverse of the bottom fraction. Examples: $\frac{1/2}{7/8} = \frac{1}{2} \times \frac{8}{7} = \frac{1 \cdot 8}{2 \cdot 7} = \frac{8}{14}$.

Simplify: $\frac{8}{14} = \frac{2.4}{2.7} = \frac{2}{2} \times \frac{4}{7} = 1 \times \frac{4}{7} = \frac{4}{7}$ 7 Adding and subtracting requires that fractions must have the same denominator. If not, we need to find a common denominator (a larger number that has both denominators as factors) and convert the fractions. Then add (or subtract) the two numerators.

Examples:
$$
\frac{1}{7} + \frac{4}{7} = \frac{5}{7}
$$

\n $\frac{1}{3} + \frac{1}{4} = \frac{1}{3} \times \frac{4}{4} + \frac{1}{4} \times \frac{3}{3} = \frac{1 \cdot 4}{3 \cdot 4} + \frac{1 \cdot 3}{4 \cdot 3} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$
\n $\frac{17}{20} - \frac{3}{4} = \frac{17}{20} \times \frac{1}{1} - \frac{3}{4} \times \frac{5}{5} = \frac{17 \cdot 1}{20 \cdot 1} - \frac{3 \cdot 5}{4 \cdot 5} = \frac{17}{20} - \frac{15}{20} = \frac{2}{20} = \frac{1}{10}$

Exponents

 a^n is 'a to the power of n' . a is multiplied by itself n times. Often a is called the base, n the exponent. Examples:

$$
2^3=2\cdot 2\cdot 2=8
$$

$$
6^4=6\cdot 6\cdot 6\cdot 6=1296
$$

Exponents do not have to be whole numbers. They can be fractions or negative.

Examples:

$$
4^{1/2} = \sqrt{4} = 2
$$

$$
3^{-2} = \frac{1}{3^2} = \frac{1}{9}
$$

Common Rules

\n- $$
a^1 = a
$$
\n- $a^k \cdot a^l = a^{k+l}$
\n- $(a^k)^l = a^{kl}$
\n- $(ab)^k = a^k \cdot b^k$
\n- $\left(\frac{a}{b}\right)^k = \left(\frac{a^k}{b^k}\right)$
\n- $a^{-k} = \frac{1}{a^k}$
\n- $\frac{a^k}{a^l} = a^{k-l}$
\n- $a^{1/2} = \sqrt{a}$
\n- $a^{1/k} = \sqrt[k]{a}$
\n- $a^0 = 1$
\n

Logarithms

A logarithm is the power (x) required to raise a base (c) to a given number (a).

$$
\log_c(a)=x\Rightarrow c^x=a
$$

Examples:

\n- $$
2^3 = 8 \Rightarrow \log_2(8) = 3
$$
\n- $4^6 = 4096 \Rightarrow \log_4(4096) = 6$
\n- $9^{1/2} = 3 \Rightarrow \log_9(3) = \frac{1}{2}$
\n

Logarithms

The three most common bases are 2, 10, and $e \approx 2.718$, the natural logarithm. It is often called Euler's number after Leonhard Euler.

Examples:

$$
\bullet\ 10^2=100 \Rightarrow \log_{10}(100)=2
$$

$$
\bullet \ 2^3 = 8 \Rightarrow \log_2(8) = 3
$$

 $e^2 = 7.3891... \Rightarrow \log(7.3891) = 2$

The natural logarithm (log_e) is the most common; used to model exponential growth (populations, etc). If no base is specified, i.e. $log(a)$, most often the base is e. Sometimes written as $ln(a)$.

Logarithms

What is e?

The number e is a famous irrational number. The first few digits are $e = 2.718282...$

Two ways to express e:

$$
\begin{array}{ll}\n\bullet & \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \\
\bullet & \sum_{n=0}^{\infty} \frac{1}{n!} \\
\end{array}
$$

Logarithms Rules

 $\log_{c}(a \cdot b) = \log_{c}(a) + \log_{c}(b)$

$$
x = \log_c(a \cdot b) \Longleftrightarrow c^x = a \cdot b
$$

\n
$$
\Rightarrow c^{x_1+x_2} = a \cdot b \text{ where } x_1 + x_2 = x
$$

\n
$$
\Rightarrow c^{x_1} \cdot c^{x_2} = a \cdot b \Rightarrow c^{x_1} = a; c^{x_2} = b
$$

\n
$$
\Rightarrow x_1 = \log_c(a); x_2 = \log_c(b)
$$

\n
$$
\Rightarrow x = x_1 + x_2 \Rightarrow \log_c(a \cdot b) = \log_c(a) + \log_c(b)
$$

Logarithms Rules

$$
\log_c(a^n) = n \cdot \log_c(a)
$$

\nFor $n = 2$:
\n
$$
x = \log_c(a^2) \iff c^x = a^2
$$

\n
$$
\Rightarrow c^{x_1+x_2} = a \cdot a \text{ where } x_1 + x_2 = x
$$

\n
$$
\Rightarrow c^{x_1} \cdot c^{x_2} = a \cdot a \Rightarrow c^{x_1} = a; c^{x_2} = a
$$

\n
$$
\Rightarrow x_1 = \log_c(a); x_2 = \log_c(a)
$$

\n
$$
\Rightarrow x = x_1 + x_2 \Rightarrow \log_c(a^2) = \log_c(a) + \log_c(a) = 2 \cdot \log_c(a)
$$

Logarithms Rules

$$
\log_c\left(\frac{a}{b}\right) = \log_c(a) - \log_c(b)
$$

$$
x = \log_c \left(\frac{a}{b}\right) \Longleftrightarrow c^x = \frac{a}{b}
$$

\n
$$
\Rightarrow c^{x_1+x_2} = \frac{a}{b} \text{ where } x_1 + x_2 = x
$$

\n
$$
\Rightarrow c^{x_1} \cdot c^{x_2} = \frac{a}{b} \Rightarrow c^{x_1} = a; c^{x_2} = \frac{1}{b} = b^{-1}
$$

\n
$$
\Rightarrow x_1 = \log_c(a); x_2 = (-1) \cdot \log_c(b)
$$

\n
$$
\Rightarrow x = x_1 + x_2 \Rightarrow \log_c \left(\frac{a}{b}\right) = \log_c(a) - \log_c(b)
$$

- $\log_2(8 \cdot 4) = \log_2(8) + \log_2(4) = 3 + 2 = 5$
- $\log_{10}\left(\frac{1000}{10}\right) = \log_{10}(1000) \log_{10}(10) = 3 1 = 2$
- $\log_4(6^4) = 4 \cdot \log_4(6)$
- $\log(x^3) = 3 \cdot \log(x)$

Order of Operations

Please Excuse My Dear Aunt Sally

- **Parentheses**
- **•** Exponents
- **Multiplication**
- **Division**
- **Addition**
- **Subtraction**

When looking at an expression, work from the left to right following PEMDAS. Note: multiplication and division are interchangeable; addition and subtraction are interchangeable.

•
$$
((1 + 2)^3)^2 = (3^3)^2 = 27^2 = 729
$$

\n• $4^3 \cdot 3^2 - 10 + 27/3 = 64 \cdot 9 - 10 + 9 = 576 - 10 + 9 = 575$
\n• $(x + x)^2 - 2x + 3 = (2x)^2 - 2x + 3 = 4x^2 - 2x + 3$

Coordinate plane

- The collection of all points (x, y) , such that $x \in (-\infty, \infty)$ and $y \in (-\infty, \infty)$.
- **Coordinates** (x, y) provide an "address" for a point in \mathbb{R}^2 .
- The point $(0,0)$ is where the x and y axes intersect and is called the **origin**.
- Other names: Cartesian plane, two-dimensional (2-D) space, \mathbb{R}^2

Examples: (-8,2),(4,5),(6,-6)

Jessica Godwin & Emily Finchum-Mason, UW [Math Camp - Lecture 1, Algebra, Functions, & Limits](#page-0-0) 18/42

Equation of a Line

Linear Equations

If we have two pairs of points $(x_1, y_1), (x_2, y_2)$, we can find a line between the two points.

A common equation for a line is:

$$
y=mx+b
$$

where m is the **slope** and b is the **y-intercept**. A line is also a way to define a variable y in terms of another variable x .

Another common form (often used in the regression setting) is

$$
y = \beta_0 + \beta_1 x
$$

, where β_0 is the **y-intercept** and β_1 is the **slope**.

Slopes

The **slope** is the ratio of the difference in the y-values to the difference in the two x-values for any two points on a line. Commonly referred to as rise over run.

$$
m=\frac{y_2-y_1}{x_2-x_1}
$$

- \bullet m measures of the steepness of a line, e.g. how high does the line "rise" in "y-land" when we move one unit to the "right" (toward ∞) in "x"-land.
- The sign of m indicates whether we're going "uphill" $(+)$ or "downhill" $(-)$ when we move to the "right" in "x"-land.

Intercepts

The **intercept**, often denoted b, is the value of y when $x = 0$.

- \bullet i.e. every line (that isn't a vertical line) has a point $(0, b)$.
- \bullet the vertical height where the line crosses the y-axis.

Find the intercept by plugging in one point on the line and the slope into the equation and then solving for the intercept.

$$
y_1 = m \cdot x_1 + b \Rightarrow b = y_1 - m \cdot x_1
$$

In a simple linear regression setting β_0 can be interpreted as the average value of a dependent variable, y, when the dependent variable x is equal to 0, if 0 is a observed or sensible value of your independent variable.

Find the equation of a line using two points

• Points:
$$
(2, 3), (7, 5)
$$
:

• Slope:
$$
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{7 - 2} = \frac{2}{5}
$$

Intercept: $b = y_1 - mx_1 = 3 - \frac{2}{5}$ $\frac{2}{5} \cdot 2 = 3 - \frac{4}{5} = 11/5$

5

Equation of the line: $y = \frac{2}{5}$ $\frac{2}{5}x + \frac{11}{5}$

A **function** is a formula or rule of correspondence that maps each element in a set X to an element in set Y .

The **domain** of a function is the set of all possible values that you can plug into the function. The range is the set of all possible values that the function $f(x)$ can return.

Examples:

 $f(x) = x^2$

- \bullet Domain: all real numbers $\mathbb R$
- Range: zero and all positive real numbers, $f(x) \geq 0$

Functions and their Limits

Examples continued

- $f(x) = \sqrt{x}$
	- Domain: zero and all positive real numbers, $x \geq 0$
	- Range: zero and all positive real numbers, $x > 0$

 $f(x) = 1/x$

- **Domain:** all real numbers except zero
- Range: all real numbers except zero

Often we would like to find the root of a linear equation. This is the value of x that maps $f(x)$ to 0 (where the line crosses the x-axis, or the value of x when $y = 0$).

$$
f(x)=mx+b
$$

Setting $f(x) = 0$, to find the root we need to solve for x.

$$
0 = mx + b
$$
 [subtract *b* from both sides]
- *b* = *mx* [divide both sides by *m*]

$$
\frac{-b}{m} = x
$$

The value $-b/m$ is the root of $f(x) = mx + b$, i.e. most lines (except horizontal lines) have a point $(\frac{-b}{m},0)$ on them.

Why do we do operations on both sides?

On the previous slide, we subtracted b from both sides or added $-b$ to both sides. Why is that okay?

$$
0 = mx + b
$$

\n
$$
\Rightarrow 0 = mx + b + (b - b)
$$

\n
$$
\Rightarrow -b + 0 = mx + (b - b)
$$

\n
$$
\Rightarrow -b = mx + 0
$$

\n
$$
\Rightarrow -b = mx
$$

The number zero is called the **additive identity**. For any number $a \in \mathbb{R}$.

$$
a+0=a.
$$

Why do we do operations on both sides?

Then, we divided both sides by m or multiplied both sides by $\frac{1}{m}$. Why is that okay?

$$
-b = mx
$$

\n
$$
\Rightarrow -b = mx \cdot \frac{1/m}{1/m}
$$

\n
$$
\Rightarrow -b \cdot \frac{1}{m} = mx \cdot \frac{1}{m}
$$

\n
$$
\Rightarrow \frac{-b}{m} = x
$$

The number one is called the **multiplicative identity**. For any number $a \in \mathbb{R}$,

$$
a\times 1=a.
$$

Examples

We may be interested in solving linear equations for values other than zero.

Say you are at the Garage on Capitol Hill (pre-Covid) and you have \$40.00 with you. If shoes are \$7.00 and a lane is \$11.00/hr how long can you bowl?

Let's take x is hours and $f(x)$ total price.

$$
f(x) = 7 + 11x
$$

How long can you bowl?

$$
40 = 11x + 7
$$

$$
40 - 7 = 11x
$$

$$
33 = 11x
$$

$$
33/11 = 3 = x
$$

Jessica Godwin & Emily Finchum-Mason, UW [Math Camp - Lecture 1, Algebra, Functions, & Limits](#page-0-0) 28/42

Solving Systems of Linear Equations

We often are interested in finding the **intersection** of two lines or the point (x, y) where two lines cross. This is called solving the system of linear equations.

Suppose we have two equations

$$
y = 3 + 0.6x \ y = 8 - 0.8x
$$

Since these lie on the same plane (i.e. x and y represent the same dimension in both equations), we now have three different ways to "call" y :

- \bullet Given name: γ
- Nicknames: $3 + 0.6$, $8 0.8x$.

This means

$$
3 + 0.6x = 8 - 0.8x.
$$

Solving Systems of Linear Equations

We use the fact that we have two different definitions of y to our advantage. Instead of two equations and two unknowns we now have one equation with one unknown!

$$
3 + 0.6x = 8 - 0.8x
$$

\n
$$
3 - 3 + 0.6x + 0.8x = 8 - 3 - 0.8x + 0.8x
$$

\n
$$
1.4x = 5
$$

\n
$$
x = 5/1.4 = 3.571429
$$

The y-value is found by plugging the found value of x into either original equation: $y = 3 + 0.6(3.571429) = 5.142857$

Solving Systems of Linear Equations

 \overline{c} با
⊗ ∞ \circ Price 4 \sim \circ 0 2 4 6 8 10 **Quantity**

Supply and Demand

Quadratic Equations

Linear functions of x or lines, always take the form $f(x) = mx + b$, where the maximum power of x is 1.

A **quadratic** function has the form $f(x) = ax^2 + bx + c$, where the maximum power x is raised to is 2. Quadratic functions often take the shape of parabolas.

Quadratic Equations

Examples

For any quadratic equation $f(x) = ax^2 + bx + c$, we find the root(s) (values of x such that $f(x) = 0$, or where the function crosses the x -axis) by using the quadratic equation:

$$
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
$$
 & $x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

 $b^2 - 4ac$ is called the **discriminant**. If the discriminant is

- positive, there will be two roots.
- zero, there will be one root.
- negative, there will be no real roots.

Quadratic Equations Factoring and FOIL

Many quadratic equations can be factored into a more simple form. For example:

$$
2x^2 - 6x - 8 = (x - 4)(2x + 2)
$$

To see that they are equivalent we can FOIL to multiply the two terms on the right hand side of the equation.

- First: $x \cdot 2x = 2x^2$
- Outer: $x \cdot 2 = 2x$
- Inner: $-4 \cdot 2x = -8x$
- Last: $-4 \cdot 2 = -8$

Thus, $(x-4)(2x+2) = 2x^2 + 2x - 8x - 8 = 2x^2 - 6x - 8$

Quadratic Equations

Factoring and FOIL

When your quadratic has been factored you can find the roots by solving each term for zero. For example:

$$
2x^2 - 6x - 8 = (x - 4)(2x + 2)
$$

has roots when $x - 4 = 0$ and $2x + 2 = 0$. Thus, the roots are found at $x = -1, 4$.

2x^2−6x−8

Jessica Godwin & Emily Finchum-Mason, UW [Math Camp - Lecture 1, Algebra, Functions, & Limits](#page-0-0) 35/42

Hunting for the FOIL factors can be tricky! Remember the quadratic equation always works!!

If $b^2 - 4ac$ is a whole number, a fraction, a squared number, then it can be factored into something simple, if not use the quadratic formula.

Examples:

- $2x^2+4x-16 \Rightarrow b^2-4ac=4^2-4\cdot 2\cdot (-16)=144; \, 2 \,\, {\rm roots};$ factors
- $3x^2-2x+9\Rightarrow b^2-4ac=(-2)^2-4\cdot 3\cdot 9=-104;$ no real roots

Exponential Functions

Exponential Functions are of the form $f(x) = ae^{bx}$. Often used as a model for population increase where $f(x)$ is the population at time x.

Logarithmic Functions

Logarithmic Functions, $f(x) = c + d \cdot log(x)$, can be used to find the time $f(x)$ necessary to reach a certain population x. It can be thought of as an 'inverse' of the exponential function.

Note: $c = -1/b \cdot log(a)$ and $d = 1/b$ from the previous exponential model.

A continuous function behaves without break or interruption. If you can follow the ENTIRE graph of a function with your pencil without picking it up, the function is continuous. Examples:

$$
\bullet \ \ f(x)=x^2
$$

$$
\bullet \ f(x)=x+4
$$

A piecewise functioncan either have 'jumps' in it or can be made up of different functions for different parts of the domain (possible x-values). Example:

Absolute Value $f(x) = |x|$ can be written as $f(x) = x, x \ge 0$ and $f(x) = -x, x < 0$

Limits

Often we are interested in what a function does as it approaches a certain value. This behavior is called the limit.

The limit of $f(x)$ as x approaches a is L:

$$
lim_{x\to a}f(x)=L
$$

It may be that a is not in the domain of $f(x)$ but we can still find the limit by seeing what value $f(x)$ is approaching as x gets very close to a. Examples:

 $\lim_{x\to 3} x^2 = 9$ (3 is in the domain)

$$
\bullet \ \lim_{x\to\infty} (1+1/x)^x = e
$$

Limits

Often limits are different depending on the direction from which you approach a. The limit 'from above' is approaching from the right $(x \nightharpoonup a)$ and the limit 'from below' $(x \uparrow a)$ is approaching from the left.

If $f(x) = \frac{1}{x-1}$ we have $\lim_{x \downarrow 1} \frac{1}{x-1} = \infty$ and $\lim_{x \uparrow 1} \frac{1}{x-1} = -\infty$

The End

Questions?